Search results for "quantum states"
showing 10 items of 12 documents
Linoleic acid: Is this the key that unlocks the quantum brain? Insights linking broken symmetries in molecular biology, mood disorders and personalis…
2017
Abstract In this paper we present a mechanistic model that integrates subneuronal structures, namely ion channels, membrane fatty acids, lipid rafts, G proteins and the cytoskeleton in a dynamic system that is finely tuned in a healthy brain. We also argue that subtle changes in the composition of the membrane’s fatty acids may lead to down-stream effects causing dysregulation of the membrane, cytoskeleton and their interface. Such exquisite sensitivity to minor changes is known to occur in physical systems undergoing phase transitions, the simplest and most studied of them is the so-called Ising model, which exhibits a phase transition at a finite temperature between an ordered and disorde…
Toward computability of trace distance discord
2014
It is known that a reliable geometric quantifier of discord-like correlations can be built by employing the so-called trace distance. This is used to measure how far the state under investigation is from the closest "classical-quantum" one. To date, the explicit calculation of this indicator for two qubits was accomplished only for states such that the reduced density matrix of the measured party is maximally mixed, a class that includes Bell-diagonal states. Here, we first reduce the required optimization for a general two-qubit state to the minimization of an explicit two-variable function. Using this framework, we show next that the minimum can be analytically worked out in a number of r…
Entanglement dynamics and relaxation in a few-qubit system interacting with random collisions
2008
The dynamics of a single qubit interacting by a sequence of pairwise collisions with an environment consisting of just two more qubits is analyzed. Each collision is modeled in terms of a random unitary operator with a uniform probability distribution described by the uniform Haar measure. We show that the purity of the system qubit as well as the bipartite and the tripartite entanglement reach time averaged equilibrium values characterized by large instantaneous fluctuations.These equilibrium values are independent of the order of collision among the qubits. The relaxation to equilibrium is analyzed also in terms of an ensemble average of random collision histories. Such average allows for…
Designing time and frequency entanglement for generation of high-dimensional photon cluster states
2020
The development of quantum technologies for quantum information science demands the realization and precise control of complex (multipartite and high dimensional) entangled systems on practical and scalable platforms. Quantum frequency combs (QFCs) generated via spontaneous four-wave mixing in integrated microring resonators represent a powerful tool towards this goal. They enable the generation of complex photon states within a single spatial mode as well as their manipulation using standard fiber-based telecommunication components. Here, we review recent progress in the development of QFCs, with a focus on our results that highlight their importance for the realization of complex quantum …
Dynamics of entanglement in one-dimensional spin systems
2003
We study the dynamics of quantum correlations in a class of exactly solvable Ising-type models. We analyze in particular the time evolution of initial Bell states created in a fully polarized background and on the ground state. We find that the pairwise entanglement propagates with a velocity proportional to the reduced interaction for all the four Bell states. Singlet-like states are favored during the propagation, in the sense that triplet-like states change their character during the propagation under certain circumstances. Characteristic for the anisotropic models is the instantaneous creation of pairwise entanglement from a fully polarized state; furthermore, the propagation of pairwis…
Information geometry of Gaussian channels
2009
We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated from distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desir…
Tomographic approach to the violation of Bell's inequalities for quantum states of two qutrits
2009
The tomographic method is employed to investigate the presence of quantum correlations in two classes of parameter-dependent states of two qutrits. The violation of some Bell's inequalities in a wide domain of the parameter space is shown. A comparison between the tomographic approach and a recent method elaborated by Wu, Poulsen and Molmer shows the better adequacy of the former method with respect to the latter one.
Design of a lambda configuration in artificial coherent nanostructures
2015
The implementation of a three-level Lambda System in artificial atoms would allow to perform advanced control tasks typical of quantum optics in the solid state realm, with photons in the $\mathrm{\mu m}$/mm range. However hardware constraints put an obstacle since protection from decoherence is often conflicting with efficient coupling to external fields. We address the problem of performing conventional STImulated Raman Adiabatic Passage (STIRAP) in the presence of low-frequency noise. We propose two strategies to defeat decoherence, based on "optimal symmetry breaking" and dynamical decoupling. We suggest how to apply to the different implementations of superconducting artificial atoms, …
Design of a Lambda system for population transfer in superconducting nanocircuits
2013
The implementation of a Lambda scheme in superconducting artificial atoms could allow detec- tion of stimulated Raman adiabatic passage (STIRAP) and other quantum manipulations in the microwave regime. However symmetries which on one hand protect the system against decoherence, yield selection rules which may cancel coupling to the pump external drive. The tradeoff between efficient coupling and decoherence due to broad-band colored Noise (BBCN), which is often the main source of decoherence is addressed, in the class of nanodevices based on the Cooper pair box (CPB) design. We study transfer efficiency by STIRAP, showing that substantial efficiency is achieved for off-symmetric bias only i…
Multiphoton Quantum Optics and Quantum State Engineering
2007
We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a d…